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Preface

The Public Interest Energy Research (PIER) Program supports public interest energy
research and development that will help improve the quality of life in California by
bringing environmentally safe, affordable, and reliable energy services and products to
the marketplace.

The PIER Program, managed by the California Energy Commission (Commission),
annually awards up to $62 million to conduct the most promising public interest energy
research by partnering with Research, Development, and Demonstration (RD&D)
organizations, including individuals, businesses, utilities, and public or private research
institutions.

PIER funding efforts are focused on the following RD&D program areas:

e Buildings End-Use Energy Efficiency

e Energy-Related Environmental Research

e Energy Systems Integration

e Environmentally Preferred Advanced Generation

e Industrial/ Agricultural/ Water End-Use Energy Efficiency

¢ Renewable Energy Technologies
What follows is the final report for the Measurement, Classification, and Quantification
of Carbon Market Opportunities in the U.S.: California Component project, contract
number 100-98-001, conducted by Winrock International. The report is entitled Carbon

Supply from Changes in Management of Forest, Range, and Agricultural Lands of California.
This project contributes to the PIER Energy-Related Environmental Research program.

For more information on the PIER Program, please visit the Commission’s Web site
www.energy.ca.gov/ pier/reports.html or contract the Commission at (916) 654-4628.
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Abstract

The project described in Carbon Supply for Forest, Range, and Agricultural Lands of California was a
portion of the Baseline, Classification, Quantification, and Measurement for Carbon Market
Opportunities in California project. This project estimated the quantity and cost of carbon
storage opportunities in California and developed carbon supply curves for the most important
classes of carbon sequestration activities in land-use change and forestry projects.

The research found that the cost of carbon sequestration from changing forest management
practices is relatively high. No forest management project, regardless of length of project, can
provide carbon sequestration at less than $2.70/ MTCO.. The largest potential source of carbon
from forest management is for lengthening rotation by five years, which can potentially provide
2.16 to 3.91 MMTCO:; at a cost of less than $13.60 per ton.

For afforestation of rangelands, longer durations produce lower cost carbon. Afforestation of
rangelands provides the most carbon at the least cost (< $2.7/MT CO,) —about 33 MMTCO: at
20 years to 4.57 billion MTCO: at 80 years.

Conservation tillage (CT) seems to offer the greatest potential for producing carbon on
agricultural land in California. It is estimated that California agricultural land could produce
up to 3.9 MMTCO; /year through CT.

This report can help stakeholders more accurately estimate the quantity of carbon credits that
might be available at different price points for different classes of projects. The estimates can
help in preparation of a portfolio of potential stakeholder responses for a range of future climate
scenarios.

Xi



Executive Summary
Objectives

The “Baseline, Classification, Quantification and Measurement for Carbon Market
Opportunities in California” project began in 2002. One of the tasks is the estimation of the
quantity and cost of carbon storage opportunities in California. The primary outputs from this
task are carbon supply curves and corresponding maps for the most important classes of carbon
sequestration activities in the land-use change and forestry sector.

Currently, the estimates of carbon sequestration potential most frequently cited are of the
theoretical potential, without consideration of current land values and alternate uses. To fill
this gap in knowledge, this report sets out to answer the basic question: “How many carbon
credits would landowners offer for sale for a particular class of activity at various price points
and where are these located?” The information contained in this report can help stakeholders
prepare for an uncertain regulatory future by providing more accurate estimates of the quantity
of carbon credits that might be available at different price points for different classes of projects.
The estimates can help in preparation of a portfolio of potential stakeholder responses for a
range of future climate scenarios.

Information about current land use (based on the California Department of Forestry (FRAP
2002), potential changes in land use and the incremental carbon resulting from the change,
opportunity costs, conversion costs, annual maintenance costs, and measurement and
monitoring costs were obtained and used in the analyses. The analyses are performed in a
geographic information system (GIS) to include the diversity of land uses, rates of carbon
sequestration, and costs. As a result, not only are more realistic estimates of the potential
supply of carbon produced, but the use of GIS shows where the least to most expensive carbon
credits will most likely be found. The general approach was to identify and locate classes of
land where there is potential to change the use to a higher carbon content, estimate rates of
carbon accumulation for each major potential land-use change activity for each land class,
assign values to each contributing cost factor, and identify datasets and methods to estimate
project risks.

Californian lands are classified into three main groups for the analyses presented here: forests,
rangelands, and agricultural lands. Forests (about 23.7 million acres) include conifers,
hardwoods, and mixed classes; rangelands (about 56.5 million acres) include a variety of non-
woody (e.g., pasture, grasslands) and woody ecosystems (e.g., oak woodlands, chaparral); and
agricultural lands (about 9.9 million acres) include a wide range of non-woody crops such as
small grains, vegetables, and berries and woody crops such as vineyards and orchards.

The steps needed for estimating the carbon supply for a potential change in land use are:
1. Identify the classes of land uses and the associated changes in management that could
lead to significant increase in carbon stocks
Estimate the area for each potential change in land use

Estimate the quantities of carbon per unit area that could be sequestered for the change
in land use over a given time period



4. Estimate the total costs (opportunity, conversion, maintenance, and measuring and
monitoring)

5. Combine the estimated quantities of carbon per unit area with the corresponding area
and cost to produce estimates of the total quantity of carbon that can be sequestered for
a given range of costs, in $/metric ton C or $/metric ton COs.

For forestlands, estimates of the potential carbon benefits were analyzed for four alternatives for
20 year and/or permanent contract periods: (1) allowing timber to age past economic maturity
(lengthening rotation time); (2) increasing the riparian buffer zone by an additional 200 feet;

(3) changing traditional clear cuts to group selection cuts, and (4) forest fuel reduction to reduce
hazard of catastrophic fires, and subsequent use of biomass in power plants. For estimating the
costs of allowing timber to age and the costs of enhanced riparian zone management, estimates
are based on specific counties for public and private landowners, and then extrapolated to all
counties throughout the state. For the group selection cuts, there appears to be little increased
carbon sequestration in Sierran mixed conifers or coastal redwoods, but, these costs are
provided to serve as an estimate of costs for other areas where a net increase in carbon stocks
may occur.

For the fuel reduction alternative, the objective was to estimate the areas and carbon stocks of
forests suitable for fuel reduction to reduce their fire risk and that were located within economic
range of existing power plants for the high and very high fire risk forests. The analysis used a
“Suitability for Potential Fuel Reduction (SPFR)” score on forest landscapes where significant
carbon loss from wildland fires exist. Additionally, SPFR scores also ranked areas feasible for
removing and transporting fuels to biomass power generating plants. The SPFR scores were
created in a GIS using slope, distance to biomass plants, and distance from roads as equal
weighted factors in the decision making process. Suitability scores for potential fuel reduction
with highest suitability were assigned to areas with gentle grades of slope that are close to roads
and biomass power plants. The analysis did not include the economic component due to the
lack of a variety of data and resources needed to be confident about projections of carbon
supply curves; but the analysis does present a first approximation of the potential reduction in
carbon emissions if forest fuels were reduced.

For rangelands, estimates of the potential carbon benefits were analyzed for one alternative —
afforestation. Historical evidence suggests that in many areas, large tracts of forest may have
once stood where grazing lands now do. Moreover, a significant proportion of today’s oak
woodlands and annual grassland vegetation types on California’s rangelands were also once
either dense forests or similar woodlands but with significantly higher biomass than they
currently contain. Presently, in much of the state, ranching is the primary activity on what
remains of these lands that were once forests or woodlands. The general approach was to
identify and locate existing rangelands where biophysical conditions could favor forests,
estimate rates of carbon accumulation for the forest types projected to grow, and assign values
to each contributing cost factor. The carbon supply is estimated for three time durations: 20
years, 40 years and 80 years of forest growth to reflect the impact of activity duration on the
likely supply and to provide an assessment for the near-term and longer-term planning
horizons.

For existing agricultural lands, only one major activity was analyzed -conservation tillage (CT)
practices, which increases soil carbon up to a period of about 20 years maximum. Due to the
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high productivity and land values associated with California agriculture, the opportunity costs
of displacing agricultural production with afforestation is not likely to be a valid source of
carbon sequestration. Although CT has been proven to be a profitable management strategy for
certain crops in many regions of the country, there are only very limited data regarding its
application in California. Given the lack of research data and the great diversity of crops
produced, it is essentially impossible to estimate the costs of CT adoption across the state in a
meaningful way.

Outcomes

Although the whole range of costs and potential carbon available are presented in this report,
Table S-1 summarizes the amount of carbon and the area available for several classes of
opportunities at three price points: —<$13.6/ MT CO; ($50/MT C), < $5.5/MT CO» ($20/MT
C), and <$2.7/MT CO; ($10/MT C). Although California has substantial areas of forests, the
cost of carbon sequestration from changing forest management practices is relatively high. No
forest management project, regardless of length of project, can provide carbon sequestration at
less than $2.70/MTCO; (Table S-1).

At a price of $13.6/ MT CO,, the total amount of carbon that could be sequestered by afforesting
grazing lands and changing forest management over a 20 year period is about 894 MMT CO,
(Table S-1). Approximating this total amount to an annual rate, results in about 45 MMT CO,/
yr. In comparison, the transportation sector emitted 160 MMT CO./ yr in 1999 and the
electricity generation sector emitted about 57 MMT CO,/ yr in 1999. Thus total sequestration at
$13.6 per MT could offset about 79% of the electricity generating fossil fuel emissions and 28%
of the transportation emissions.

Table S-1. Summary of the quantity of carbon (million metric tons CO, [MMT CO]) and
area (million acres) available at selected price points—= $13.6/MTCO, ($50/MT C),
< $5.5/MT CO; ($20/MT C), and <$2.7/MT CO, ($10/MT C) —for several classes of activities
on existing rangelands and forestlands over 20-year, 40-year, 80-year, and permanent
(forest management—riparian buffer) durations.

Quantity of C—MMT CO, Area available — million acres

Activit
ey 20 years | 40 years | 80 years | 20 years | 40 years | 80 years

Forest management
Lengthen rotation

<$13.6
(discounted C) 347 - -- 0.31 - -
<$13.6 )16 B ) . i )

(undiscounted C)
Increase riparian buffer-width

<$13.6 3.91 (permanent) 0.044

Grazing lands
Afforestation
<$13.6 887 3,256 5,639 12.03 17.79 20.76
<$5.5 345 3,017 5,504 2.72 14.83 19.03
<$2.7 33 1,610 4,569 0.20 5.68 13.34




The largest potential source of carbon from forest management is for lengthening rotation by
five years that can potentially provide 2.16 to 3.91 MMTCO:; at a cost of less than $13.60/ MT
CO, depending on whether the carbon is undiscounted or discounted. Increasing the riparian
buffer zone by 200 feet could sequester 3.91 MMTCO. permanently (assuming no catastrophic
fire risk) at a cost between $2.7 and $13.6 per MTCO,. This amount could occur on about 43,730
acres of forestland.

Lengthening forest rotation by five years shows that the counties with the least expensive
carbon do not produce the highest quantities of carbon (Figure S-1 and S-2). The highest
quantities of carbon that could be sequestered by this activity are located in the north coast
counties, but these same counties have some of the most expensive carbon. The difference
between the two discounted methods relates to different assumptions that could be used about
the existing carbon in forest stands. Under method 1, shown in A and B in Figure S-1, carbon
emissions in the initial harvest are ignored. Under the alternative accounting method, shown in
Cin Figure S-1, these initial emissions are considered. The costs tend to be lower for the
alternative method of accounting because the emissions from the initial harvest are held off to
future periods when rotations are extended, which creates an additional carbon benefit in early
periods.
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Figure S-1. Distribution, at the county scale, of the cost to sequester carbon (in
$/metric t C) via lengthening the forest rotation time by 5 years for two methods
of discounting carbon (A. and C.) and for undiscounted carbon (B.).
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Figure S-2. Distribution, at the county scale of resolution, of the potential amount of
carbon (metric t C) that could be sequestered on all forest lands by lengthening the
forest rotation time by 5 years for two methods of discounting carbon (A. and C.) and for
undiscounted carbon (B.).

Results are presented on public and on private lands of an analysis of the potential carbon
sequestration and costs through expansion of the prohibitive riparian buffers for forestry
operations. On public lands, the least expensive carbon, less than $70/t C (or less than
$19/MTCO,) generally coincides with those counties that potentially provide the highest
quantities (Northeast Cascades and the northern part of North Sierra). On private lands, the
trend is roughly the same, except that the most carbon at the least expensive cost is mainly
centered in Northeast Cascade counties (Figure S-3). This project type could lead to leakage,
because landowners could simply increase the overall size of the areas they propose to cut in
order to compensate for the set-asides. The extent of this potential leakage has not been
estimated here, but should be considered as part of carbon sequestration plans.
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Figure S-3. Distribution, at the county scale of resolution, of the quantity (metric tons)
and cost ($/metric t C) of sequestering carbon by extending riparian buffers 200 feet
along perennial streams on public and private lands.

From the forest fuel reduction analysis, the area of forests in the upper 25% of the Suitability
Potential for Fuel Reduction scores accounted for 774,827 hectares, areas that could be

considered as suitable candidates for fuel reduction projects (Figure S-4). The forest area
contained an estimated cumulative carbon stock of 74.2 MMT, and based on parallel work on

California’s baseline in the forestry sector, the estimated emissions from these fore